

2^{ème} année Sciences Expérimentales

Série : Les Suites Numériques

Exercice 1:

Déterminer la limite de la suie (u_n) définie par : $(\forall n \in \mathbb{N})$: $u_n = 1 - \frac{1}{3} - \frac{1}{9} - \frac{1}{27} - \dots - \frac{1}{3^n}$

Exercice 2:

Déterminer la limite de la suite (u_n) dans les cas suivants :

1.
$$u_n = \frac{5n^2 + 3}{2n - 7}$$

2.
$$u_n = \frac{7n + (-1)^n}{5n + 3}$$

3.
$$u_n = \frac{\cos(n)}{n^2 + 3}$$

4.
$$u_n = \frac{1}{\sqrt{1+n^2}} + \frac{1}{\sqrt{2+n^2}} + \frac{1}{\sqrt{3+n^2}} + \dots + \frac{1}{\sqrt{n+n^2}}$$

5.
$$u_n = \frac{3^n + 5^n}{3^n + 4 \times 5^n}$$

Exercice 3:

Considérons la suite (u_n) définie par : $u_0 = 10$ et $u_{n+1} = \frac{17}{19}u_n + \frac{18}{19}$ pour tout n de \mathbb{N}

- **1.** Montrer que : $u_n \ge 9$, pour tout n de \mathbb{N}
- **2.** Montrer que (u_n) est décroissante, puis déduire qu'elle est convergente.
- **3.** On pose, $v_n = u_n 9$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite géométrique
 - b- Calculer v_n en fonction de n
 - c- Déduire u_n en fonction de n, puis calculer $\lim_{n\to+\infty} u_n$

Exercice 4:

Considérons la suite (u_n) définie par : $u_0 = 3$ et $u_{n+1} = \frac{12 - 8u_n}{4 - 3u_n}$ pour tout n de \mathbb{N}

- **1.** Montrer par récurrence que : $u_n > 2$, pour tout n de \mathbb{N}
- **2.** On pose: $v_n = \frac{u_n}{u_n 2}$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite arithmétique
 - b- Calculer v_n en fonction de n

c- Déduire u_n en fonction de n, puis calculer $\lim_{n\to +\infty} u_n$

Exercice 5:

Considérons la suite (u_n) définie par : $u_0 = 2$ et $u_{n+1} = \frac{7u_n + 2}{2u_n + 7}$ pour tout n de \mathbb{N}

- **1.** Montrer par récurrence que : $u_n \ge 1$, pour tout n de \mathbb{N}
- 2. Montrer que (u_n) est décroissante et qu'elle est convergente
- **3.** On pose: $v_n = \frac{u_n 1}{u_n + 1}$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite géométrique
 - **b-** Calculer v_n en fonction de n
 - **c-** Déduire u_n en fonction de n, puis calculer $\lim_{n\to+\infty} u_n$

Exercice 6:

Considérons la fonction f définie sur I = [0,1] par : $f(x) = \frac{4x+3}{3x+4}$

- **1.** Etudier les variations de f sur I = [0,1]
- **2.** Montrer que $f(I) \subset I$
- **3.** Etudier la position de (C_f) avec l'axe (Δ) : y = x sur I = [0,1]
- **4.** Considérons la suite numérique (u_n) définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = f(u_n)$ pour tout n de

 \mathbb{N}

- a- Montrer que $0 \le u_n \le 1$, pour tout n de \mathbb{N}
- b- Etudier la monotonie de (u_n)
- c- Calculer $\lim_{n\to+\infty} u_n$

Corrigé de l'exercice 1 :

Soit n un élément de \mathbb{N}

On a:
$$u_n = 1 - \frac{1}{3} \left[1 + \left(\frac{1}{3} \right) + \left(\frac{1}{3} \right)^2 + \dots + \left(\frac{1}{3} \right)^{n-1} \right]$$

Et puisque :
$$1 + \left(\frac{1}{3}\right) + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{3}\right)^{n-1} = \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \left(\frac{1}{3}\right)} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) = \frac{3}{2} - \frac{3}{2} \left(\frac{1}{3}\right)^n$$

Alors:
$$u_n = 1 - \frac{1}{3} \left(\frac{3}{2} - \frac{3}{2} \left(\frac{1}{3} \right)^n \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{3} \right)^n$$

On a:
$$-1 < \frac{1}{3} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{1}{3} \right)^n = 0$

Et par suite :
$$\lim_{n\to+\infty} u_n = \frac{1}{2}$$

Corrigé de l'exercice 2 :

1.
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{5n^2 + 3}{2n - 7} = \lim_{n \to +\infty} \frac{n^2 \left(5 + \frac{3}{n^2}\right)}{n \left(2 - \frac{7}{n}\right)} = \lim_{n \to +\infty} n \times \frac{5 + \frac{3}{n^2}}{2 - \frac{7}{n}} = +\infty$$

Car:
$$\lim_{n\to+\infty} n = +\infty$$
, $\lim_{n\to+\infty} \frac{3}{n^2} = 0$ et $\lim_{n\to+\infty} \frac{7}{n} = 0$

2. Soit n un élément de \mathbb{N}

On a:
$$\frac{7n-1}{5n+3} \le u_n \le \frac{7n+1}{5n+3}$$
 (car $-1 \le (-1)^n \le 1$)

Puisque
$$\lim_{n \to +\infty} \frac{7n-1}{5n+3} = \frac{7}{5}$$
 et $\lim_{n \to +\infty} \frac{7n+1}{5n+3} = \frac{7}{5}$

Alors
$$\lim_{n\to+\infty}u_n=\frac{7}{5}$$

3. On a, pour tout n de $\mathbb{N}: -1 \le \cos(n) \le 1$ et $n^2 + 3 > 0$

Donc:
$$(\forall n \in \mathbb{N})$$
 $\frac{-1}{n^2+3} \le u_n \le \frac{1}{n^2+3}$

Puisque
$$\lim_{n \to +\infty} \frac{-1}{n^2 + 3} = 0$$
 et $\lim_{n \to +\infty} \frac{1}{n^2 + 3} = 0$

Et par suite : $\lim_{n\to+\infty} u_n = 0$

4. Soit n un élément de \mathbb{N}^*

Pour tout k de \mathbb{N} tel que $1 \le k \le n$, on a:

$$1 \le k \le n \quad \Leftrightarrow \quad 1 + n^2 \le k + n^2 \le n + n^2$$

$$\Leftrightarrow \quad \sqrt{1 + n^2} \le \sqrt{k + n^2} \le \sqrt{n + n^2}$$

$$\Leftrightarrow \quad \frac{1}{\sqrt{n + n^2}} \le \frac{1}{\sqrt{k + n^2}} \le \frac{1}{\sqrt{1 + n^2}}$$

Donc:
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n+n^2}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k+n^2}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{1+n^2}}$$

Donc:
$$\frac{n}{\sqrt{n+n^2}} \le u_n \le \frac{n}{\sqrt{1+n^2}}$$

Puisque :
$$\lim_{n \to +\infty} \frac{n}{\sqrt{n+n^2}} = \lim_{n \to +\infty} \sqrt{\frac{n^2}{n+n^2}} = 1$$
 et $\lim_{n \to +\infty} \frac{n}{\sqrt{1+n^2}} = \lim_{n \to +\infty} \sqrt{\frac{n^2}{1+n^2}} = 1$

Alors:
$$\lim_{n\to+\infty} u_n = 1$$

5.
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{3^n + 5^n}{3^n + 4 \times 5^n} = \lim_{n \to +\infty} \frac{5^n \left(\frac{3^n}{5^n} + 1\right)}{5^n \left(\frac{3^n}{5^n} + 4\right)} = \lim_{n \to +\infty} \frac{\left(\frac{3}{5}\right)^n + 1}{\left(\frac{3}{5}\right)^n + 4} = \frac{1}{4}$$

Car: (puisque
$$-1 < \frac{3}{5} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{3}{5} \right)^n = 0$)

Corrigé de l'exercice 3 :

1. Montrons par récurrence que : $u_n \ge 9$, pour tout n de \mathbb{N}

$$\triangleright$$
 Pour $n=0$:

On a
$$u_0 = 10$$

Donc
$$u_0 \ge 9$$

$$\triangleright$$
 Soit $n \in \mathbb{N}$

○ Supposons que :
$$u_n \ge 9$$

o Montrons que :
$$u_{n+1} \ge 9$$

On a:

$$u_{n+1} - 9 = \frac{17}{19} u_n + \frac{18}{19} - 9$$
$$= \frac{17}{19} u_n - \frac{153}{19}$$
$$= \frac{17}{19} (u_n - 9)$$

On a d'après l'hypothèse de récurrence : $u_n \ge 9$

Donc
$$u_n - 9 \ge 0$$

Donc
$$\frac{17}{19}(u_n - 9) \ge 0$$

Donc
$$u_{n+1} \ge 9$$

Et par suite
$$u_{n+1} - 9 \ge 0$$

 \triangleright On conclut que : $u_n \ge 9$, pour tout n de $\mathbb N$

2. Soit $n \in \mathbb{N}$

On a:

$$u_{n+1} - u_n = \frac{17}{19} u_n + \frac{18}{19} - u_n$$
$$= \frac{-2}{19} u_n - \frac{18}{19}$$
$$= \frac{-2}{19} (u_n - 9)$$

Puisque
$$u_n - 9 \ge 0$$
 alors $\frac{-2}{19}(u_n - 9) \le 0$

Donc $u_{n+1} - u_n \le 0$, pour tout n de \mathbb{N}

Et par suite (u_n) est décroissante.

• Puisque (u_n) est décroissante et minorée alors (u_n) est convergente .

3.

a- Soit
$$n \in \mathbb{N}$$

On a

$$v_{n+1} = u_{n+1} - 9$$

$$= \frac{17}{19} (u_n - 9)$$

$$= \frac{17}{19} v_n$$

Donc: $v_{n+1} = \frac{17}{19}v_n$ pour tout n de \mathbb{N}

Et par suite (v_n) est une suite géométrique de raison $q = \frac{17}{19}$ et de premier terme

$$v_0 = u_0 - 9 = 10 - 9 = 1$$

b-

On a
$$v_n = v_0 \left(\frac{17}{19}\right)^n$$
 pour tout n de \mathbb{N}

Donc
$$v_n = \left(\frac{17}{19}\right)^n$$
 pour tout n de \mathbb{N}

c-

 \triangleright On a: $v_n = u_n - 9$ pour tout n de \mathbb{N}

Donc: pour tout n de \mathbb{N}

Et par suite : $u_n = \left(\frac{17}{19}\right)^n + 9$ pour tout n de \mathbb{N}

 \triangleright Puisque $-1 < \frac{17}{19} < 1$ alors $\lim_{n \to +\infty} \left(\frac{17}{19}\right)^n = 0$

Et par suite $\lim_{n\to+\infty} u_n = 9$

Corrigé de l'exercice 4 :

1.

 \triangleright Pour n=0:

On a $u_0 = 3$

Donc $u_0 > 2$

 \triangleright Soit $n \in \mathbb{N}$

o Supposons que : $u_n > 2$

o Montrons que : $u_{n+1} > 2$

On a:

$$u_{n+1}-2 = \frac{12-8u_n}{4-3u_n}-2$$

$$= \frac{12-8u_n-8+6u_n}{4-3u_n}$$

$$= \frac{4-2u_n}{4-3u_n}$$

$$= \frac{-2(u_n-2)}{4-3u_n}$$

On a d'après l'hypothèse de récurrence : $u_n > 2$

Donc
$$u_n - 2 > 0$$
 et $4 - 3u_n < -2 < 0$

Donc
$$\frac{-2(u_n-2)}{4-3u_n} > 0$$

Donc
$$u_{n+1} - 2 > 0$$

Et par suite
$$u_{n+1} > 2$$

 \triangleright On conclut que : $u_n > 2$, pour tout n de \mathbb{N}

2. a- Soit $n \in \mathbb{N}$:

on a:

 \triangleright

$$v_{n+1} = \frac{u_{n+1}}{u_{n+1} - 2}$$

$$= \frac{\frac{12 - 8u_n}{4 - 3u_n}}{\frac{12 - 8u_n - 8 + 6u_n}{4 - 3u_n}}$$

$$= \frac{\frac{12 - 8u_n}{4 - 2u_n}}{\frac{4 - 2u_n}{4 - 2u_n}}$$

$$= \frac{-2(4u_n - 6)}{-2(u_n - 2)}$$

$$= \frac{4u_n - 6}{u_n - 2}$$

 \triangleright

$$v_{n+1} - v_n = \frac{4u_n - 6}{u_n - 2} - \frac{u_n}{u_n - 2}$$

$$= \frac{3u_n - 6}{u_n - 2}$$

$$= \frac{3(u_n - 2)}{u_n - 2}$$

$$= 3$$

Donc, $v_{n+1} - v_n = 3$ pour tout n de \mathbb{N}

Et par suite (v_n) est une suite arithmétique de raison r=3 et de premier terme

$$v_0 = \frac{u_0}{u_0 - 2} = \frac{3}{3 - 2} = 3$$

b- On a: $v_n = v_0 + nr$ pour tout n de \mathbb{N}

Donc: $v_n = 3 + 3n$ pour tout n de \mathbb{N}

c-

 \triangleright Soit $n \in \mathbb{N}$

On a:

$$v_{n} = \frac{u_{n}}{u_{n} - 2} \Leftrightarrow u_{n}v_{n} - 2v_{n} = u_{n}$$

$$\Leftrightarrow u_{n}v_{n} - u_{n} = 2v_{n}$$

$$\Leftrightarrow u_{n}(v_{n} - 1) = 2v_{n}$$

$$\Leftrightarrow u_{n} = \frac{2v_{n}}{v_{n} - 1}$$

Donc
$$u_n = \frac{2(3+3n)}{(3+3n)-1}$$

Et par suite : $u_n = \frac{6+6n}{2+3n}$ pour tout n de \mathbb{N}

8/13

Corrigé de l'exercice 5 :

1. Montrons par récurrence que : $u_n \ge 1$, pour tout n de \mathbb{N}

 \triangleright Pour n=0:

On a $u_0 = 2$

Donc $u_0 \ge 1$

 \triangleright Soit $n \in \mathbb{N}$

○ Supposons que : $u_n \ge 1$

○ Montrons que : $u_{n+1} \ge 1$

On a:

$$u_{n+1}-1 = \frac{7u_n + 2}{2u_n + 7} - 1$$

$$= \frac{7u_n + 2 - 2u_n - 7}{2u_n + 7}$$

$$= \frac{5u_n - 5}{2u_n + 7}$$

$$= \frac{5(u_n - 1)}{2u_n + 7}$$

On a d'après l'hypothèse de récurrence : $u_n \ge 1$

Donc $u_n - 1 \ge 0$ et $2u_n + 7 \ge 9 > 0$

Donc
$$\frac{5(u_n-1)}{2u_n+7} \ge 0$$

Donc $u_{n+1} - 1 \ge 0$

Et par suite $u_{n+1} \ge 1$

 \triangleright On conclut que : $u_n \ge 1$, pour tout n de \mathbb{N}

2.

 \triangleright Soit $n \in \mathbb{N}$

On a:

$$u_{n+1} - u_n = \frac{7u_n + 2}{2u_n + 7} - u_n$$

$$= \frac{7u_n + 2 - 2u_n^2 - 7u_n}{2u_n + 7}$$

$$= \frac{2(1 - u_n^2)}{2u_n + 7}$$

Puisque $u_n \ge 1$ alors $1 - u_n^2 \le 0$ et $2u_n + 7 > 0$

Donc
$$\frac{2(1-u_n^2)}{2u_n+7} \le 0$$

Et par suite $u_{n+1} - u_n \le 0$ pour tout n de \mathbb{N}

D'où (u_n) est décroissante

 \triangleright Puisque (u_n) est décroissante et minorée alors (u_n) est convergente

3.

a- Soit $n \in \mathbb{N}$

On a:

$$\begin{array}{rcl} v_{n+1} & = & \frac{u_{n+1} - 1}{u_{n+1} + 1} \\ & = & \frac{\frac{7u_n + 2}{2u_n + 7} - 1}{\frac{7u_n + 2}{2u_n + 7} + 1} \\ & = & \frac{7u_n + 2 - 2u_n - 7}{7u_n + 2 + 2u_n + 7} \\ & = & \frac{5u_n - 5}{9u_n + 9} \\ & = & \frac{5}{9} \times \frac{u_n - 1}{u_n + 1} \\ & = & \frac{5}{9} v_n \end{array}$$

Donc $v_{n+1} = \frac{5}{9}v_n$ pour tout n de \mathbb{N}

Et par suite (v_n) est une suite géométrique de raison $q = \frac{5}{9}$ et du premier terme

$$v_0 = \frac{u_0 - 1}{u_0 + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

b- On a $v_n = v_0 \left(\frac{5}{9}\right)^n$ pour tout n de \mathbb{N}

Donc $v_n = \frac{1}{3} \left(\frac{5}{9} \right)^n$ pour tout n de \mathbb{N}

c-

 \triangleright Soit $n \in \mathbb{N}$

On a:

$$v_{n} = \frac{u_{n} - 1}{u_{n} + 1} \iff u_{n}v_{n} + v_{n} = u_{n} - 1$$

$$\Leftrightarrow u_{n} - u_{n}v_{n} = v_{n} + 1$$

$$\Leftrightarrow u_{n}(1 - v_{n}) = v_{n} + 1$$

$$\Leftrightarrow u_{n} = \frac{v_{n} + 1}{1 - v_{n}}$$

Donc
$$u_n = \frac{\frac{1}{3} \left(\frac{5}{9}\right)^n + 1}{1 - \frac{1}{3} \left(\frac{5}{9}\right)^n}$$
, pour tout n de \mathbb{N}

$$ightharpoonup$$
 Puisque $-1 < \frac{5}{9} < 1$ alors $\lim_{n \to +\infty} \left(\frac{5}{9}\right)^n = 0$

Donc
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{\frac{1}{3} \left(\frac{5}{9}\right)^n + 1}{1 - \frac{1}{3} \left(\frac{5}{9}\right)^n} = 1$$

Corrigé de l'exercice 6 :

1. On a f est dérivable sur I = [0,1]Soit $x \in I = [0,1]$:

On a:
$$f'(x) = \left(\frac{4x+3}{3x+4}\right)' = \frac{\begin{vmatrix} 4 & 3 \\ 3 & 4 \end{vmatrix}}{\left(3x+4\right)^2}$$

Donc:
$$f'(x) = \frac{7}{(3x+4)^2}$$
 pour tout x de $I = [0,1]$

Puisque : f'(x) > 0 pour tout x de I = [0,1] alors f est strictement croissante sur I = [0,1]

2. On a : f est continue et strictement croissante sur I = [0,1]

Donc
$$f(I) = f([0,1]) = [f(0), f(1)] = \left[\frac{3}{4}, 1\right]$$

Et par suite $f(I) \subset I$

3. Soit $x \in I = [0,1]$:

On a:

$$f(x)-x = \frac{4x+3}{3x+4}-x$$

$$= \frac{4x+3-3x^2-4x}{3x+4}$$

$$= \frac{3(1-x^2)}{3x+4}$$

On a: $x \in I = [0,1]$ donc $1-x^2 \ge 0$ et 3x+4>0

Donc
$$\frac{3(1-x^2)}{3x+4} \ge 0$$

Donc $f(x)-x \ge 0$ pour tout x de I = [0,1]

Et par suite (C_f) est au-dessus de (Δ) : y = x sur I = [0,1]

4.

a- Montrons que : $0 \le u_n \le 1$, pour tout n de \mathbb{N}

 \triangleright Pour n=0:

On a:
$$u_0 = \frac{1}{2}$$

Donc:
$$0 \le u_0 \le 1$$

 \triangleright Soit $n \in \mathbb{N}$

o Supposons que $0 \le u_n \le 1$

o Montrons que $0 \le u_{n+1} \le 1$

D'après l'hypothèse de récurrence , on a $u_n \in I$

Donc
$$f(u_n) \in f(I)$$

Donc
$$u_{n+1} \in f(I)$$

Et puisque $f(I) \subset I$, alors $u_{n+1} \in I$

D'où
$$0 \le u_{n+1} \le 1$$

 \triangleright On conclut que $0 \le u_n \le 1$, pour tout n de \mathbb{N}

b- Soit $n \in \mathbb{N}$

On a
$$f(x)-x \ge 0$$
 pour tout x de $I = [0,1]$

Et comme
$$u_n \in I$$
, alors $f(u_n) - u_n \ge 0$

Donc
$$u_{n+1} - u_n \ge 0$$
, pour tout n de \mathbb{N}

D'où
$$(u_n)$$
 est croissante

c- On a:
$$u_0 = \frac{1}{2} \in I$$
 et $u_{n+1} = f(u_n)$ pour tout n de \mathbb{N}

12/13

 \triangleright f est continue sur I = [0,1]

$$\triangleright f(I) \subset I$$

 \triangleright Puisque (u_n) est croissante et majorée alors elle est convergente

Donc la limite de (u_n) est solution de l'équation f(x) = x

Et on a:
$$f(x)=x \Leftrightarrow x=-1 \text{ ou } x=1$$

Puisque
$$0 \le u_n \le 1$$
, alors $0 \le \lim_{n \to +\infty} u_n \le 1$

D'où
$$\lim_{n\to+\infty}u_n=1$$

つづく

