# ~ Examens historiques ~ Baccalauréat sciences expérimentales Juin 1977

### Problème 1:

1. Soit f la fonction de la variable réelle x définie par :  $f(x) = \frac{x}{\sqrt{1+x}}$ 

Etudier les variations de f et tracer sa courbe représentative  $(C_1)$  dans un repère orthonormé  $(O,\vec{i},\vec{j})$ .

Donner l'équation de la tangente à  $(C_1)$  au point d'abscisse 0 et la tracer.

- 2. En faisant une intégration par parties, calculer l'aire arithmétique  $\mathcal{A}(\lambda)$  du domaine limité par la courbe  $(C_1)$ , les droites d'équations x=0 et  $x=\lambda$   $(\lambda\in ]-1,0]$ ) Calculer  $\lim_{\lambda\to -1^+}\mathcal{A}(\lambda)$
- 3. Soit g la fonction de la variable réelle x définie par :  $g(x) = \frac{x^2}{\sqrt{1+x}}$

Etudier les variations de g et tracer sa courbe représentative  $(C_2)$  dans le même repère orthonormé  $(O, \vec{i}, \vec{j})$ .

Préciser les points O, A communs à  $(C_1)$  et  $(C_2)$ .

Déterminer, suivant les valeurs de x, la position relative des courbes  $(C_1)$  et  $(C_2)$ .

4. Calculer:  $\int_0^1 \frac{x^2}{\sqrt{1+x}} dx$  en faisant le changement de variable :  $u = \sqrt{1+x}$ 

Déduire de ce qui précède l'aire arithmétique S du domaine limité par la courbe  $(C_1)$ , la courbe  $(C_2)$ , l'axe des ordonnées y oy et la parallèle à y oy passant par A.

### Problème 2:

- I. Soit la suite numérique réelle  $(u_n)$  définie par :  $(\forall n \in \mathbb{N}^*)$   $u_n = \ln\left(\frac{n+1}{n}\right)$
- 1. calculer  $u_{n+1} u_n$  et en déduire que la suite  $(u_n)$  est décroissante
- 2. On pose  $v_n = u_1 + u_2 + \dots + u_n$

Calculer  $v_n$  en fonction de n puis la limite de  $v_n$  lorsque n tend vers l'infini.

La suite  $(v_n)$  est-elle convergente ?



- 3. On pose  $w_n = u_n + u_{n+1} + u_{n+2} + \dots + u_{2n}$ .
  - Calculer  $w_n$  en fonction de n puis la limite de  $w_n$  lorsque n tend vers l'infini.

La suite  $(w_n)$  est-elle convergente?

II. Une urne contient 3 boules noires et 4 boules blanches.

On considère l'épreuve suivante : On tire au hasard une boule de l'urne ;

- Si la boule tirée est noire, on la remet dans l'urne
- Si la boule tirée est blanche, on ne la remet pas dans l'urne.

On effectue cette épreuve trois fois de suite. Soit *X* la variable aléatoire qui à chaque ensemble des trois tirages successifs associe le nombre de boules blanches restant dans l'urne après les trois tirages.

- 1. Calculer la probabilité pour que *X* prenne la valeur 1.
- 2. Calculer la probabilité pour que X prenne la valeur 2.

Pour cela, on sera amené à calculer la probabilité pour obtenir les tirages successifs suivants :

- a) Une blanche, une blanche, une noire.
- b) Une blanche, une noire, une blanche.
- c) Une noire, une blanche, une blanche.
- 3. Quelles sont les valeurs prises par X?

En utilisant un procédé analogue à celui utilisé précédemment, déterminer la loi de probabilité de X .

# **Correction: Problème 1**

$$f(x) = \frac{x}{\sqrt{1+x}}$$

1.

- Ensemble de définition de  $f: D_f = ]-1,+\infty[$
- Limites aux bornes de  $D_f$ :

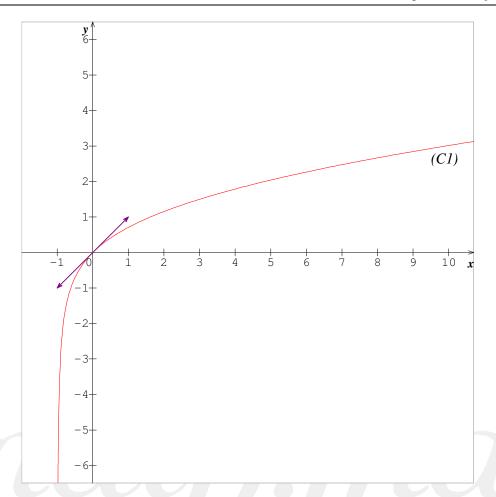
$$\lim_{x \to -1^{+}} f(x) = -\infty; \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{\frac{x^{2}}{x+1}} = +\infty$$

• 
$$f'(x) = \frac{2+x}{2(1+x)\sqrt{1+x}}$$

Tableau de variation de f:

| x     | -1        | +∞ |
|-------|-----------|----|
| f'(x) |           | +  |
| f(x)  | $-\infty$ | +∞ |

- Branches infinies:
- ✓ La droite d'équation x = -1 est asymptote à  $(C_1)$
- $\checkmark \lim_{x \to +\infty} \frac{f(x)}{x} = 0$ ; donc  $(C_1)$  admet une branche parabolique de direction l'axe des abscisses
- Equation de la tangente à  $(C_1)$  au point d'abscisse 0: y = x
- Représentation graphique de  $(C_1)$ :



2. 
$$\mathcal{A}(\lambda) = \int_0^{\lambda} f(x) dx = \int_0^{\lambda} \frac{x}{\sqrt{1+x}} dx$$

Faisons une intégration par parties .

Soit

$$u = x \Rightarrow u' = dx$$

$$v' = \frac{1}{\sqrt{1+x}} \Rightarrow v = 2\sqrt{1+x}$$

d'ou

$$\mathcal{A}(\lambda) = \left[2x\sqrt{1+x}\right]_0^{\lambda} - 2\int_0^{\lambda} \sqrt{1+x} \, dx$$

$$\mathcal{A}(\lambda) = \left[2x\sqrt{1+x}\right]_0^{\lambda} - 2\left[\frac{2}{3}\sqrt{(1+x)^3}\right]_0^{\lambda}$$

$$\mathcal{A}(\lambda) = 2\lambda\sqrt{1+\lambda} - \frac{4}{3}\sqrt{(1+\lambda)^3} + \frac{4}{3}$$

et 
$$\lim_{\lambda \to -1^+} \mathcal{A}(\lambda) = \frac{4}{3}$$

3. 
$$g(x) = \frac{x^2}{\sqrt{1+x}}$$

- Ensemble de définition de  $g: D_g = ]-1,+\infty[$ .
- Limites aux bornes de  $D_g$ :  $\lim_{x \to -1^+} g(x) = +\infty$ ;  $\lim_{x \to +\infty} g(x) = +\infty$

• 
$$g'(x) = \frac{x(4+3x)}{2(1+x)\sqrt{1+x}}$$

Tableau de variation de g:

| x     | -1        | 0            | $+\infty$   |
|-------|-----------|--------------|-------------|
| g'(x) | _         | þ            | +           |
| g(x)  | $+\infty$ | <b>~</b> _0/ | <b>≠</b> +∞ |

- Branches infinies:
  - ✓ La droite d'équation x = -1 est asymptote à  $(C_2)$
  - ✓  $\lim_{x \to +\infty} \frac{g(x)}{x} = +\infty$ ; donc  $(C_2)$  admet une branche parabolique de direction l'axe des ordonnées.
- Intersection de  $(C_1)$  et  $(C_2)$

$$f(x) = g(x) \Leftrightarrow f(x) - g(x) = 0$$

$$\Leftrightarrow \frac{x}{\sqrt{1+x}} - \frac{x^2}{\sqrt{1+x}} = 0$$

$$\Leftrightarrow x - x^2 = 0$$

$$\Leftrightarrow x (1-x) = 0$$

$$\Leftrightarrow x = 0 \quad ou \quad x = 1$$

donc  $(C_1) \cap (C_2) = \{O, A\}$  avec O(0,0) et  $A\left(1, \frac{\sqrt{2}}{2}\right)$ 

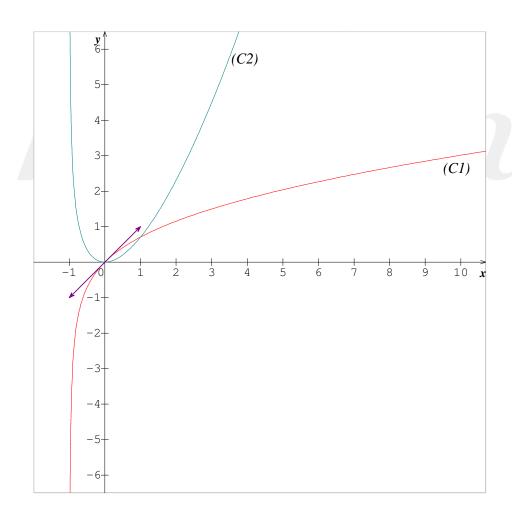
• Position relative de  $(C_1)$  et  $(C_2)$ 

5/8



| x         | -1 | 0 |   | 1 | +∞ |
|-----------|----|---|---|---|----|
| f(x)-g(x) |    | þ | + | þ | _  |

- ✓ Si  $x \in ]-1,0[$  alors  $(C_1)$  est au dessous de  $(C_2)$
- ✓ Si x = 0 alors  $(C_1)$  coupe  $(C_2)$  en O
- ✓ Si  $x \in ]0,1[$  alors  $(C_1)$  est au dessus de  $(C_2)$
- ✓ Si x = 1 alors  $(C_1)$  coupe  $(C_2)$  en A
- ✓ Si  $x \in ]1,+\infty[$  alors  $(C_1)$  est au dessous de  $(C_2)$
- Représentation graphique  $(C_2)$  de g:





4. 
$$\int_0^1 \frac{x^2}{\sqrt{1+x}} dx$$
:

Posons  $u = \sqrt{1+x} \iff u^2 = 1+x \iff x = u^2 - 1 \iff x^2 = (u^2 - 1)^2$ 

$$du = \frac{1}{2\sqrt{1+x}}dx \iff 2du = \frac{1}{\sqrt{1+x}}dx$$

lorsque x = 0 alors u = 1 et lorsque x = 1 alors  $u = \sqrt{2}$  d'où

$$\int_0^1 \frac{x^2}{\sqrt{1+x}} dx = \int_1^{\sqrt{2}} 2(u^2 - 1)^2 du = 2\int_1^{\sqrt{2}} (u^4 - 2u^2 + 1) du = 2\left[\frac{u^5}{5} - \frac{2}{3}u^3 + u\right]_1^{\sqrt{2}} = \frac{14\sqrt{2} - 16}{15}$$

$$S = \int_{0}^{1} \left[ f(x) - g(x) \right] dx = \int_{0}^{1} f(x) dx - \int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{x}{\sqrt{1+x}} dx - \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} dx = \lim_{\lambda \to 1} A(\lambda) - \frac{14\sqrt{2} - 16}{15} = \frac{-2}{3}\sqrt{2} + \frac{4}{3} - \frac{14\sqrt{2} - 16}{15} = \boxed{\frac{12 - 8\sqrt{2}}{5}}$$



## Correction: Problème 2

I. 
$$(\forall n \in \mathbb{N}^*)$$
  $u_n = \ln\left(\frac{n+1}{n}\right)$ 

1. 
$$u_{n+1} - u_n = \ln\left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right) < 0 \quad (\text{car } \frac{n^2 + 2n}{n^2 + 2n + 1} < 1)$$

donc  $u_{n+1} < u_n$  et par suite  $(u_n)$  est strictement décroissante

2. 
$$v_n = \ln\left(\frac{2}{1}\right) + \ln\left(\frac{3}{2}\right) + \dots + \ln\left(\frac{n+1}{n}\right) = \ln\left(\frac{2}{1} \times \frac{3}{2} \times \dots \times \frac{n+1}{n}\right) = \ln(n+1)$$

d'ou  $\lim_{n \to +\infty} v_n = +\infty$  et par suite $(v_n)$  est divergente

3.

$$w_n = \ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+2}{n+1}\right) + \dots + \ln\left(\frac{2n+1}{2n}\right) = \ln\left(\frac{n+1}{n} \times \frac{n+2}{n+1} \times \dots \times \frac{2n+1}{2n}\right) = \ln\left(\frac{2n+1}{n}\right)$$

$$\text{d'ou } \lim_{n \to +\infty} w_n = \ln(2)$$

II. 1. 
$$p(X = 1) = \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} = \frac{4}{35}$$

2. 
$$p(X = 2) = \left(\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}\right) + \left(\frac{4}{7} \times \frac{3}{6} \times \frac{3}{6}\right) + \left(\frac{3}{7} \times \frac{4}{7} \times \frac{3}{6}\right) = \frac{107}{245}$$

3. 
$$X(\Omega) = \{1, 2, 3, 4\}$$

# Loi de probabilité de X :

| k        | 1  | 2   | 3   | 4   |
|----------|----|-----|-----|-----|
| p(X = k) | 4  | 107 | 127 | 27  |
|          | 35 | 245 | 343 | 343 |

つづく